• Home
    • Site Map
    • reveal
    • blog
  • About
    • csave
  • CMSiMDE
  • Stage1-ag17
    • 組員
    • W3
  • Stage2-ag10
    • 組員:
    • W5
    • W6
    • W7
    • W8
    • 成品:
  • W13~W14
    • RoboDK
    • Task
      • task1
      • task2
  • W15
  • W16
  • Stage3-ag4
    • Stage3組員
    • 更改1
    • 模擬問題
  • 英文學習中
  • CoppeliaSim
  • ssh
  • heroku
  • DC推廣中心

40823144 cd2021

  • Home
    • Site Map
    • reveal
    • blog
  • About
    • csave
  • CMSiMDE
  • Stage1-ag17
    • 組員
    • W3
  • Stage2-ag10
    • 組員:
    • W5
    • W6
    • W7
    • W8
    • 成品:
  • W13~W14
    • RoboDK
    • Task
      • task1
      • task2
  • W15
  • W16
  • Stage3-ag4
    • Stage3組員
    • 更改1
    • 模擬問題
  • 英文學習中
  • CoppeliaSim
  • ssh
  • heroku
  • DC推廣中心
W13~W14 << Previous Next >> Task

RoboDK

單純的改了一 些數字,讓它可以來回。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# KMOLab Portable RoboDK pick and place
from robolink import *    # API to communicate with robodk
from robodk import *      # robodk robotics toolbox
 
# Setup global parameters
BALL_DIAMETER = 100 # diameter of one ball
APPROACH = 100      # approach distance to grab each part, in mm
nTCPs = 6           # number of TCP's in the tool
 
#----------------------------------------------
# Function definitions
 
def box_calc(BALLS_SIDE=4, BALLS_MAX=None):
    """Calculate a list of points (ball center) as if the balls were stored in a box"""
    if BALLS_MAX is None: BALLS_MAX = BALLS_SIDE**3
    xyz_list = []
    for h in range(BALLS_SIDE):
        for i in range(BALLS_SIDE):
            for j in range(BALLS_SIDE):
                xyz_list = xyz_list + [[(i+0.5)*BALL_DIAMETER, (j+0.5)*BALL_DIAMETER, (h+0.5)*BALL_DIAMETER]]
                if len(xyz_list) >= BALLS_MAX:
                    return xyz_list
    return xyz_list
 
def pyramid_calc(BALLS_SIDE=4):
    """Calculate a list of points (ball center) as if the balls were place in a pyramid"""
    #the number of balls can be calculated as: int(BALLS_SIDE*(BALLS_SIDE+1)*(2*BALLS_SIDE+1)/6)
    BALL_DIAMETER = 100
    xyz_list = []
    sqrt2 = 2**(0.5)
    for h in range(BALLS_SIDE):
        for i in range(BALLS_SIDE-h):
            for j in range(BALLS_SIDE-h):
                height = h*BALL_DIAMETER/sqrt2 + BALL_DIAMETER/2
                xyz_list = xyz_list + [[i*BALL_DIAMETER + (h+1)*BALL_DIAMETER*0.5, j*BALL_DIAMETER + (h+1)*BALL_DIAMETER*0.5, height]]
    return xyz_list
 
def balls_setup(frame, positions):
    """Place a list of balls in a reference frame. The reference object (ball) must have been previously copied to the clipboard."""
    nballs = len(positions)
    step = 1.0/(nballs - 1)
    for i in range(nballs):
        newball = frame.Paste()
        newball.setName('ball ' + str(i)) #set item name
        newball.setPose(transl(positions[i])) #set item position with respect to parent
        newball.setVisible(True, False) #make item visible but hide the reference frame
        newball.Recolor([1-step*i, step*i, 0.2, 1]) #set RGBA color
 
def cleanup_balls(parentnodes):
    """Delete all child items whose name starts with \"ball\", from the provided list of parent items."""
    todelete = []
    for item in parentnodes:
        todelete = todelete + item.Childs()
 
    for item in todelete:
        if item.Name().startswith('ball'):
            item.Delete()
 
def TCP_On(toolitem, tcp_id):
    """Attach the closest object to the toolitem Htool pose,
    furthermore, it will output appropriate function calls on the generated robot program (call to TCP_On)"""
    toolitem.AttachClosest()
    toolitem.RDK().RunMessage('Set air valve %i on' % (tcp_id+1))
    toolitem.RDK().RunProgram('TCP_On(%i)' % (tcp_id+1));
         
def TCP_Off(toolitem, tcp_id, itemleave=0):
    """Detaches the closest object attached to the toolitem Htool pose,
    furthermore, it will output appropriate function calls on the generated robot program (call to TCP_Off)"""
    toolitem.DetachAll(itemleave)
    toolitem.RDK().RunMessage('Set air valve %i off' % (tcp_id+1))
    toolitem.RDK().RunProgram('TCP_Off(%i)' % (tcp_id+1));
 
 
#----------------------------------------------------------
# The program starts here:
 
# Any interaction with RoboDK must be done through RDK:
RDK = Robolink(robodk_path="C:/robodk/bin/RoboDK.exe", robodk_ip='127.0.0.1')
 
# Turn off automatic rendering (faster)
RDK.Render(False)
 
#RDK.Set_Simulation_Speed(500); # set the simulation speed
 
# Gather required items from the station tree
robot = RDK.Item('Fanuc M-710iC/50')
robot_tools = robot.Childs()
#robottool = RDK.Item('MainTool')
frame1 = RDK.Item('Table 1')
frame2 = RDK.Item('Table 2')
 
# Copy a ball as an object (same as CTRL+C)
ballref = RDK.Item('reference ball')
ballref.Copy()
 
# Run a pre-defined station program (in RoboDK) to replace the two tables
prog_reset = RDK.Item('Replace objects')
prog_reset.RunProgram()
 
# Call custom procedure to remove old objects
cleanup_balls([frame1, frame2])
 
# Make a list of positions to place the objects
frame1_list = pyramid_calc(4)
frame2_list = pyramid_calc(4)
 
# Programmatically place the objects with a custom-made procedure
balls_setup(frame1, frame1_list)
 
# Delete previously generated tools
for tool in robot_tools:
    if tool.Name().startswith('TCP'):
        tool.Delete()
         
# Calculate tool frames for the suction cup tool of 6 suction cups
TCP_list = []
for i in range(nTCPs):
    TCPi_pose = transl(0,0,100)*rotz((360/nTCPs)*i*pi/180)*transl(125,0,0)*roty(pi/2)
    TCPi = robot.AddTool(TCPi_pose, 'TCP %i' % (i+1))
    TCP_list.append(TCPi)
 
TCP_0 = TCP_list[0]
 
# Turn on automatic rendering
RDK.Render(True)
 
# Move balls   
robot.setPoseTool(TCP_list[0])
nballs_frame1 = len(frame1_list)
nballs_frame2 = len(frame2_list)
idTake = nballs_frame1 - 1
idLeave = 0
idTCP = 0
target_app_frame = transl(2*BALL_DIAMETER, 2*BALL_DIAMETER, 4*BALL_DIAMETER)*roty(pi)*transl(0,0,-APPROACH)
 
while idTake >= 0:
    # ------------------------------------------------------------------
    # first priority: grab as many balls as possible
    # the tool is empty at this point, so take as many balls as possible (up to a maximum of 6 -> nTCPs)
    ntake = min(nTCPs, idTake + 1)
 
    # approach to frame 1
    robot.setPoseFrame(frame1)
    robot.setPoseTool(TCP_0)
    robot.MoveJ([0,0,0,0,10,-200])
    robot.MoveJ(target_app_frame)
 
    # grab ntake balls from frame 1
    for i in range(ntake):
        TCPi = TCP_list[i]
        robot.setPoseTool(TCPi)
        # calculate target wrt frame1: rotation about Y is needed since Z and X axis are inverted
        target = transl(frame1_list[idTake])*roty(pi)*rotx(30*pi/180)
        target_app = target*transl(0,0,-APPROACH)
        idTake = idTake - 1       
        robot.MoveL(target_app)
        robot.MoveL(target)
        TCP_On(TCPi, i)
        robot.MoveL(target_app)
  
    # ------------------------------------------------------------------
    # second priority: unload the tool    
    # approach to frame 2 and place the tool balls into table 2
    robot.setPoseTool(TCP_0)
    robot.MoveJ(target_app_frame)
    robot.MoveJ([0,0,0,0,10,-200])
    robot.setPoseFrame(frame2)   
    robot.MoveJ(target_app_frame)
    for i in range(ntake):
        TCPi = TCP_list[i]
        robot.setPoseTool(TCPi)
        if idLeave > nballs_frame2-1:
            raise Exception("No room left to place objects in Table 2")
         
        # calculate target wrt frame1: rotation of 180 about Y is needed since Z and X axis are inverted
        target = transl(frame2_list[idLeave])*roty(pi)*rotx(30*pi/180)
        target_app = target*transl(0,0,-APPROACH)
        idLeave = idLeave + 1       
        robot.MoveL(target_app)
        robot.MoveL(target)
        TCP_Off(TCPi, i, frame2)
        robot.MoveL(target_app)
 
    robot.MoveJ(target_app_frame)
 
# Move home when the robot finishes
robot.MoveJ([0,0,0,0,10,-200])
 
 
 
# Gather required items from the station tree
robot = RDK.Item('Fanuc M-710iC/50')
robot_tools = robot.Childs()
#robottool = RDK.Item('MainTool')
frame1 = RDK.Item('Table 1')
frame2 = RDK.Item('Table 2')
 
 
 
# Call custom procedure to remove old objects
cleanup_balls([frame1 , frame2])
 
 
# Make a list of positions to place the objects
frame1_list = pyramid_calc(4)
frame2_list = pyramid_calc(4)
 
# Programmatically place the objects with a custom-made procedure
balls_setup(frame2, frame2_list)
 
# Delete previously generated tools
for tool in robot_tools:
    if tool.Name().startswith('TCP'):
        tool.Delete()
         
# Calculate tool frames for the suction cup tool of 6 suction cups
TCP_list = []
for i in range(nTCPs):
    TCPi_pose = transl(0,0,100)*rotz((360/nTCPs)*i*pi/180)*transl(125,0,0)*roty(pi/2)
    TCPi = robot.AddTool(TCPi_pose, 'TCP %i' % (i+1))
    TCP_list.append(TCPi)
 
TCP_0 = TCP_list[0]
 
 
 
# Move balls   
robot.setPoseTool(TCP_list[0])
nballs_frame2 = len(frame2_list)
nballs_frame1 = len(frame1_list)
idTake = nballs_frame2 - 1
idLeave = 0
idTCP = 0
target_app_frame = transl(2*BALL_DIAMETER, 2*BALL_DIAMETER, 4*BALL_DIAMETER)*roty(pi)*transl(0,0,-APPROACH)
 
while idTake >= 0:
    # ------------------------------------------------------------------
    # first priority: grab as many balls as possible
    # the tool is empty at this point, so take as many balls as possible (up to a maximum of 6 -> nTCPs)
    ntake = min(nTCPs, idTake + 1)
 
    # approach to frame 1
    robot.setPoseFrame(frame2)
    robot.setPoseTool(TCP_0)
    robot.MoveJ([0,0,0,0,10,-200])
    robot.MoveJ(target_app_frame)
 
    # grab ntake balls from frame 1
    for i in range(ntake):
        TCPi = TCP_list[i]
        robot.setPoseTool(TCPi)
        # calculate target wrt frame1: rotation about Y is needed since Z and X axis are inverted
        target = transl(frame2_list[idTake])*roty(pi)*rotx(30*pi/180)
        target_app = target*transl(0,0,-APPROACH)
        idTake = idTake - 1       
        robot.MoveL(target_app)
        robot.MoveL(target)
        TCP_On(TCPi, i)
        robot.MoveL(target_app)
  
    # ------------------------------------------------------------------
    # second priority: unload the tool    
    # approach to frame 2 and place the tool balls into table 2
    robot.setPoseTool(TCP_0)
    robot.MoveJ(target_app_frame)
    robot.MoveJ([0,0,0,0,10,-200])
    robot.setPoseFrame(frame1)   
    robot.MoveJ(target_app_frame)
    for i in range(ntake):
        TCPi = TCP_list[i]
        robot.setPoseTool(TCPi)
        if idLeave > nballs_frame2-1:
            raise Exception("No room left to place objects in Table 2")
         
        # calculate target wrt frame1: rotation of 180 about Y is needed since Z and X axis are inverted
        target = transl(frame1_list[idLeave])*roty(pi)*rotx(30*pi/180)
        target_app = target*transl(0,0,-APPROACH)
        idLeave = idLeave + 1       
        robot.MoveL(target_app)
        robot.MoveL(target)
        TCP_Off(TCPi, i, frame2)
        robot.MoveL(target_app)
 
    robot.MoveJ(target_app_frame)
 
# Move home when the robot finishes
robot.MoveJ([0,0,0,0,10,-200])




W13~W14 << Previous Next >> Task

Copyright ©2025 All rights reserved | This template is made with by Colorlib